The Role of ER Stress and Translation in Cell Death

Randal J. Kaufman, Ph.D. Departments of Biological Chemistry & Internal Medicine Investigator, Howard Hughes Medical Institute University of Michigan Medical Center Ann Arbor, MI

The Endoplasmic Reticulum:

Calcium storage and gated release Oxidative protein folding Quality control ER-associated protein degradation Core oligosaccharide biosynthesis Lipid and sterol biosynthesis

Chinese hamster ovary cell

Factor VIII Expression Induces ER Stress

Activation of the Unfolded Protein Response

Calcium depletion Altered glycosylation Nutrient deprivation (GRP) Reductive/oxidative stress Growth arrest / DNA damage (GADD) Protein expression thapsigargin, ionophore
tunicamycin, castanospermine
glucose, hypoxia
DTT, homocysteine
etoposide, UV
wild-type / mutant / subunits

Activation of the Unfolded Protein Response

Pathological conditions:

Viral infection, tumorigenesis, DNA damage, diabetes, atherosclerosis, ischemic injury, conformational diseases

Physiological responses: Glucose regulation of insulin production (β cells) Response to a misfolded protein (hepatocytes)

The Unfolded Protein Response

The Unfolded Protein Response

The Unfolded Protein Response

UPR Signaling Responses

ER Stress-Induced Apoptosis

ER perturbation by mild stress

NT

25 ng/ml Tm overnight

25 ng/ml Tm 2 weeks

All stress pathways are activated during mild stress

IRE1α

Differential outcomes for UPR pathways during persistent stress

Selective instability of mRNAs in the PERK-CHOP axis

Cells pretreated to induce UPR and ActD added to block transcription

Selective instability of proteins in the PERK-CHOP axis

Cells pretreated to induce UPR and CHX added to block translation

UPR-induced Alterations in Gene Expression

Rutkowski et al. PLOS Biol. (In Press)

Translation Initiation Response to External Stimuli

Translation Initiation Response to External Stimuli

Translation Initiation Response to External Stimuli

elF2α phosphorylation is required for translation attenuation upon ER stress

elF2 α A/A mice die within 24 hr after birth

Glucose Rescue of elF2 α A/A Mouse

A/A islets have reduced β -cells and insulin content

S/S

A/A

Glucagon

Scheuner et al. 2001 Mol. Cell 7: 1165

Translational control is required to prevent ER distension/stress in pancreatic β cells

Wolcott-Rallison Syndrome

Rare autosomal recessive disorder Diabetes mellitus in early infancy Multiple epiphyseal dysplasia/osteoporosis **Growth retardation** Due to mutations in PERK/PEK Delépine et al. 2000 Nat. Gen. 25: 406

Does the UPR play a role in the etiology of type II diabetes?

DIET ENVIRONMENTAL STRESS GENETIC FACTORS

Partial loss of UPR ? Diabetes

+

Does the UPR play a role in the etiology of type II diabetes?

DIET ENVIRONMENTAL STRESS GENETIC FACTORS

High-Fat or db/db

Partial loss of UPR (eIF2α S/A) ? Diabetes

+

Heterozygous *eIF2\alpha S/A* mice become obese upon high-fat diet

Heterozygous elF2 α S/A mice are glucose intolerant with impaired insulin secretion *in vivo*

Scheuner et al. 2005 Nat. Med. 11: 757

High-fat diet induces ER stress in beta cells of $eIF2\alpha$ S/A mice

LF S/A

500 nm

Increased Association of Proinsulin with BiP in HF-Fed S/A Mice

Increased Association of Proinsulin with BiP in HF-Fed S/A Mice

Scheuner et al. 2005 Nat. Med. 11: 757

CHOP deletion increases HF-induced obesity in elF2 α ^{S/A} mice

wt-S/A vs ko-S/A * P<0.05; ** P<0.01

CHOP deletion prevents HF diet-induced glucose intolerance in elF2 $\alpha^{S/A}$ mice

*** P<0.001

Blood glucose levels (mg/dL)

CHOP deletion promotes islet hyperplasia in high fat $eIF2\alpha^{S/A}$ mice

CHOP deletion restores insulin granules and secretion in HF-fed $eIF2\alpha^{S/A}$ mice

Chop+/+ S/S

Chop+/+ S/A

CHOP deletion restores insulin granules and secretion in HF-fed $eIF2\alpha^{S/A}$ mice

Chop+/+ S/S

Chop+/+ S/A

Does expression of a malfolded protein induce the UPR, oxidative stress, and apoptosis *in vivo*? Does expression of a malfolded protein induce the UPR, oxidative stress, and apoptosis *in vivo*?

Clotting factor VIII inefficiently secreted due to misfolding.

Does factor VIII expression activate the UPR and apoptosis *in vivo*?

FVIII expression after hydrodynamic DNA injection

* Miao et al., 2004 Blood 103:3412

FVIII expression after hydrodynamic DNA injection

Miao et al., 2004 Blood 103:3412

FVIII Expression Induces Apoptosis in Mouse Liver

CHOP is required for FVIII induced apoptosis

Vect

Chop-/-

Nomarski

TUNEL

FVIII Expression Induces ER Stress in Liver

Vect FVIII BDD 226/N6

ER Stress-Induced Oxidative Stress

ER Stress-Induced Oxidative Stress

ER Stress-Induced Oxidative Stress

ER Stress-Induced Apoptosis

ER Stress-Induced Apoptosis

ACKNOWLEDGEMENTS

Kaufman Laboratory, U of M

Donalyn Scheuner Benbo Song Kezhong Zhang Robert Clark Sung-hoon Back Kenji Sakaki Jyoti Malhotra Tom Rutkowski Mark Ribick Jun Wu

Past:

Stacey Arnold Martin Schroder Xiaohua Shen Edward McEwen Kyungho Lee Chuan Yin Liu Witoon Tirasophon Ajith Wehlinda

Dept. of Pediatrics, U of M **Steven Pipe** Honghi Miao **UM Transgenic Animal Core Patrick Gillespie Thom Sanders** Linda Samuelson Joslin Diabetes Center **Ross Laybutt** Susan Bonner-Weir Vrije Universiteit Brussel **Diabetes Research Center Daisy Flamez Frans Schuit**

kaufmanr@umich.edu